منابع مشابه
Generalized Wronskians and Weierstrass Weights
Given a point P on a smooth projective curve C of genus g, one can determine the Weierstrass weight of that point by looking at a certain Wronskian. In practice, this computation is difficult to do for large genus. We introduce a natural generalization of the Wronskian matrix, which depends on a sequence of integers s = m0, . . . ,mg−1 and show that the determinant of our matrix is nonzero at P...
متن کاملOn defining generalized rank weights
This paper investigates the generalized rank weights, with a definition implied by the study of the generalized rank weight enumerator. We study rank metric codes over L, where L is a finite extension of a field K. This is a generalization of the case where K = Fq and L = Fqm of Gabidulin codes to arbitrary characteristic. We show equivalence to previous definitions, in particular the ones by K...
متن کاملGeneralized weights: an anticode approach
In this paper we study generalized weights as an algebraic invariant of a code. We first describe anticodes in the Hamming and in the rank metric, proving in particular that optimal anticodes in the rank metric coincide with Frobenius-closed spaces. Then we characterize both generalized Hamming and rank weights of a code in terms of the intersection of the code with optimal anticodes in the res...
متن کاملConstructive Training Methods for feedforward Neural Networks with Binary weights
Quantization of the parameters of a Perceptron is a central problem in hardware implementation of neural networks using a numerical technology. A neural model with each weight limited to a small integer range will require little surface of silicon. Moreover, according to Occam's razor principle, better generalization abilities can be expected from a simpler computational model. The price to pay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4871176